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We study the inviscid coupled motion of a rigid body (of density ρb, in a fluid of
density ρ) and singular distributions of vorticity in the absence of gravity, using
for illustration a cylinder moving near a point vortex or dipolar vortex, and the
axisymmetric interaction between a vortex ring and sphere.

The coupled motion of a cylinder (radius a) and a point vortex, initially separated by
a distance R and with zero total momentum, is governed by the parameter R4/(ρb/ρ+
1)a4. When R4/(ρb/ρ +1)a4 � 1, a (positive) point vortex moves anticlockwise around
the cylinder which executes an oscillatory clockwise motion, with a mixture of two
frequencies, centred around its initial position. When R4/(ρb/ρ + 1)a4 � 1, the initial
velocity of the cylinder is sufficiently large that the dynamics become uncoupled, with
the cylinder moving off to infinity. The final velocity of the cylinder is related to the
permanent displacement of the point vortex.

The interaction between a cylinder (initially at rest) and a dipolar vortex starting
at infinity depends on the distance of the vortex from the centreline (h), the initial
separation of the vortical elements (2d), and ρb/ρ. For a symmetric encounter (h = 0)
with a dense cylinder, the vortical elements pass around the cylinder and move off to
infinity, with the cylinder being displaced a finite distance forward. However, when
ρb/ρ < 1, the cylinder is accelerated forward to such an extent that the vortex cannot
overtake. Instead, the cylinder ‘extracts’ a proportion of the impulse from the dipolar
vortex. An asymmetric interaction (h > 0) leads to the cylinder moving off in the
opposite direction to the dipolar vortex.

To illustrate the difference between two- and three-dimensional flows, we consider
the axisymmetric interaction between a vortex ring and a rigid sphere. The velocity
perturbation decays so rapidly with distance that the interaction between the sphere
and vortex ring is localized, but the underlying processes are similar to two-
dimensional flows.

We briefly discuss the general implications of these results for turbulent multiphase
flows.

1. Introduction
A Lagrangian formulation of fluid mechanics is based on following ‘identifiable

pieces of matter’ (Batchelor 1967, p. 71). While much simpler than an Eulerian
formulation to pose, it tends to be difficult to apply because of the large number
of pieces of ‘matter’ to be followed. (These two formulations were conveniently
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designated by German mathematicians as the ‘Eulerian’ and the ‘Lagrangian’ forms,
although in reality, both are due to Euler (Lamb 1932).) In a Lagrangian formulation
of a dispersed multiphase flow, the ‘pieces of matter’ (bubbles, droplets or particles)
are followed by integrating with time the force and torque acting on them; the
force and torque are estimated from the local values of the flow and the velocity
gradient tensor to give the instantaneous velocity and acceleration of the particles
(see Magnaudet & Eames 2000, for a review of some of these forces). Most semi-
empirical expressions for force and torque used are based on the requirement that the
pieces of ‘matter’ are much smaller than the characteristic length scale of the local
flow into which they move. For turbulent flows, this requires particles to be smaller
than the Kolmogorov length scale characterizing the smallest eddies through which
the particles move. Extensive progress has been made when this criterion is strictly
valid (see the review by Squires & Simonin 2002).

A turbulent or unsteady flow generated by discrete elements or particles can create
flow features on a scale comparable to, or even smaller than the elements themselves
owing to vortex shedding and wake instabilities (e.g. Hill, Koch & Ladd 2001; Mougin
& Magnaudet 2002). These particles will experience unsteady lift and drag forces by
shedding vorticity (Sarpkaya 1963, 1968), as well as from their interaction with vortices
shed from particles upstream. These forces are significant for particles whose density is
comparable to, or less than, the ambient fluid. Under these circumstances, the particles
are not much smaller than the local length scale associated with the upstream flow,
and the estimates of the force and torque, generally used in Lagrangian formulations
of multiphase flows (see Magnaudet & Eames 2000), may no longer be suitable. The
first major question is what is the force on particles moving in the vicinity of flow
structures, such as vortices, which are of comparable size or smaller than the particles.
The second question is how do the particles themselves permanently affect the flow.

The interaction between rigid bodies and vortices has been studied extensively
for inviscid fluids. Solutions describing point and dipolar vortices interacting with
fixed planar bodies (or bodies of infinite density) are described by Milne-Thompson
(1968). To quantify the unsteady force on riser pipes, Sarpkaya (1963, 1968) studied
the interaction between a cylinder and point vortices representing previously shed
vorticity which interacts with the cylinder. Dhanak (1981) and Pedrizzetti (1992)
examined the unsteady interaction between a sphere and vortex filament. Howe,
Lauchle & Wang (2001) analysed the frequency spectra of the force generated by
vortex shedding from a sphere, and their comparison with experimental results was
good. These studies have been extended using direct numerical simulation (DNS)
to examine how pairs of line vortices interact with a sphere (Kim, Elghobashi &
Sirignano 1997) or the influence of a line vortex on the heat and mass transfer rates
from spherical droplets (Masoudi & Sirignano 2000). The force on the rigid body in
the presence of vortices can be estimated from these studies, but the dynamic coupling
and the communication of momentum/impulse between the body and vortices is not
understood. This forms an essential element of this paper.

Some nonlinear aspects of turbulence can be understood from the dynamics of
rigid particles in inhomogeneous flows. A mechanistic approach was first applied by
Rossby (1948), and later by Flór & Eames (2002), to explain the influence of gradients
in the Coriolis force on the trajectory of monopolar vortices. Hunt (1987) considered
the dynamics of rigid bodies in sheared flows, and furthered Prandtl’s ‘fluid-lump’
approach to interpret Reynolds stress. Examples of vortices interacting with small-
scale structures are large eddies interacting with thin boundary layers (Smedman,
Hogstrom & Hunt 2003), turbulence interacting with sharp shear layers, and vortices
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impinging on density interfaces (Linden 1973). Shear layers tend to inhibit cross-zonal
transport and act as barriers to transport (see Juckes & McIntyre 1987), as observed
at the edge of the polar vortex. Hunt & Durbin (1999) studied the motion of a
vortex (or ‘fluid-lump’) near a shear layer and suggested that shear layers shelter one
region from another and inhibit the movement of vortices across the layer. Although
we focus on the coupled motion of rigid bodies and vortices, the general processes
described are also relevant to understanding the ‘shear sheltering’ mechanism.

To understand the coupled motion between rigid bodies and a rotational flow,
we focus on singular distributions of vorticity in an inviscid flow in the absence
of buoyancy forces. The force on a cylinder moving near a collection of point
vortices was calculated by Sarpkaya & Garrison (1963), Shashikanth et al. (2002),
Borisov & Mamaev (2003), and Ramodanov (2002), while the coupled dynamics of a
single-point vortex and a cylinder were reported by Ramodanov (2001). The analysis
of Shashikanth et al. (2002) is noteworthy because they developed a Hamiltonian
formulation for circular cylinders interacting with point vortices, which they applied
to comment on the stability of Föppl’s wake vortices. Shashikanth (2006) examined
the dynamics of a cylinder of the same density as the ambient fluid, interacting with
point vortices and studied the vortex trajectories and stability of the coupled motion,
using a Hamiltonian formulation. The new results reported here can be viewed as an
extension to consider the significant influence of the cylinder density on the coupled
dynamics. We extend the force calculation to axisymmetric flows in § 2. The force
is equal to the rate of decrease of the total impulse, and has an intuitively clear
form. Combined with an advection equation for point and ring vortices, the coupled
dynamics may be followed. This framework is applied to study the coupled dynamics
of a cylinder/point vortex (§ 3), a cylinder/dipolar vortex (§ 4), and a sphere/vortex
ring (§ 5). The nature of the coupled dynamics is significantly altered by the relative
density of the body to the fluid. We show how momentum can be permanently
transferred between the body and vortices in a manner altogether different from
a drag force. In § 6, we make some general conclusions and attempt to draw a
connection with other fluid mechanical problems.

2. Force on a body moving near a singular distribution of vorticity
We calculate the force on a body in the presence of a singular distribution of

vorticity where the flow is irrotational except at singular points, lines or surfaces. We
focus on point symmetric bodies (cylinders or spheres) which are not rotating and as
such we do not consider the torque on such bodies since it is zero in an inviscid fluid.
To simplify the analysis we also restrict our attention to a stagnant ambient flow. The
analysis may be extended to a steady ambient stream, but the methodology does not
readily extend to spatially varying external flows. This point is discussed in § 6.

First, consider a planar body moving with velocity U in an unbounded flow near
a collection of N point vortices of circulation Γi located at xi , where i = 1, . . . , N .
The irrotational flow, u, outside the point vortices is related to the pressure field, p,
through Euler’s equation:

ρ
Du
Dt

= −∇p, (2.1)

where ρ is the fluid density. The force on a body located at Xb and moving with
velocity U = Ẋb is equal to the normal pressure force integrated over the surface of
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the body (Sb):

F =

∫
Sb

pn̂ dS, (2.2)

where n̂ is the unit vector normal to the surface of the body and directed into the
body.

Because of incompressibility and irrotationality, the velocity can be expressed in
terms of a potential which satisfies Laplace’s equation. The flow is decomposed as

u = ∇ (φb + φv + φi) , (2.3)

where φb, φv and φi correspond to the velocity potential associated with the bound,
free and image vorticity, respectively (using the terminology of Saffman 1992 and
Howe 1995). The bound vorticity is generated by the motion of the body. The flow
induced by the free vorticity, ∇φv , is calculate using the Biot-Savart Law (Batchelor
1967, p. 507). The kinematic condition applied on the surface of the body is

∇φb · n̂ = U · n̂, ∇(φv + φi) · n̂ =0, (2.4)

where n̂ is a unit normal into the body or out of the control volume encapsulating
the body. By applying the momentum integral theorem to (2.1) (e.g. Howe 1995), the
difference between the force on the control surface S∞ and the body is equal to∫

S∞

pn̂ dS + F = −
∫

V∞−Vb

ρ

(
∂u
∂t

+ (u · ∇)u
)

dV. (2.5)

The body and vortices are enclosed by a large control volume V∞ which is bounded
by the surface S∞. Integrating (2.1) yields Bernoulli’s equation

p = − 1
2
ρu2 − ρ

∂φ

∂t
+ F (t), (2.6)

(Saffman 1992, p. 19). We identify separately the linear impulse associated with the
bound, free and image vorticity, defined here by

İb =

∫
Sb

ρφbn̂ dS, Iv =

∫
V∞−Vb

ρx × ω dV, I i =

∫
Sb

ρφi n̂ dS, (2.7)

respectively. (These definitions are equivalent if we explicitly describe the body and
image velocity potential in terms of bound/free vorticity.) The impulse associated
with the bound vorticity corresponds to the impulse of the body. The density of the
fluid is explicitly included here in the definitions of impulse, though in general it is
not (see Eames & Hunt 2004 who discuss the effect of ρ changing with time).

The force on the body is therefore determined by the rate of decrease of the total
impulse of the flow (see Appendix A):

F = −[ İb + İv + İ i], (2.8)

where the impulse of the body, Ib, is determined by its velocity and geometry,
characterized in terms of the added-mass tensor Cm, through

Ib = ρCmVb · U . (2.9)

Thus,

(ρbI+ ρCm)Vb · U̇ = − İv − İ i , (2.10)

where I is the identity matrix. Equation (2.15) is identical to the result of Shashikanth
et al. (2002), Milne-Thompson (1968) and Sarpkaya & Garrison (1963). Howe’s (1995)
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general expression for the force on a body, implicitly suggests (2.10). Integrating (2.10)
with time gives

[(ρbI + ρCm)Vb · U + Iv + I i]
t
0 = 0. (2.11)

The above expression has a clear physical interpretation, with the sum of the
momentum of the body and the total impulse of the flow being conserved. It is
the simple form of (2.11) which enables us to study analytically the coupled dynamics
of isolated bodies and singular distributions of vorticity. The analyses of Shashikanth
(2005, 2006) also obtain the result (2.11) which forms the basis of his Hamiltonian
formation.

In a planar flow, the ith vortex is advected with a velocity

ẋi = ∇φb(xi) +

N∑
k=1,k �=i

(xi − xk) × Γk ẑ
2π|xi − xk|2 + ∇φi(xi), (2.12)

induced locally at the position of the vortex due to the body, other vortices and image
vortices. To illustrate the richness of the coupled dynamics, we consider an isolated
cylinder (of radius a) moving in an unbounded flow. A cylinder moving with velocity
U , characterized by Cm = I, generates a flow

φb(x) = −a2U · (x − xb)

|x − xb|2 . (2.13)

The image and free vorticity generated by point vortices are, respectively, described
by the velocity potentials

φi(x) =

N∑
k=1

Γk

2π
log |x − xb| −

N∑
k=1

Γk

2π
log

∣∣∣∣x − xb − (xk − xb)a
2

|xk − xb|2

∣∣∣∣ , (2.14)

φv(x) =

N∑
k=1

Γk

2π
log |x − xk|, (2.15)

(see Saffman 1992). The above results extend naturally to vortex sheets and other
singular distributions of vorticity, that may be viewed as a collection of point or line
vortices.

For three-dimensional flows, the rate of change of the impulse associated with the
free vorticity is

İv =
d

dt

∫
V∞−Vb

1
2
ρx × ω dV =

∫
V∞−Vb

ρu × ω dV, (2.16)

(from Saffman 1992, p. 58). Repeating the same steps described above for three-
dimensional bodies in the presence of singular distributions of vorticity also yields
(2.11). Wells (1996) calculated the force on a sphere fixed near a line vortex
and discussed a geometrical interpretation of the force, but did not consider the
unsteady flow problem. The second example we shall consider is the three-dimensional
interaction between a rigid sphere (of radius a) and a thin cored vortex ring. A rigid
sphere moving with velocity U , characterized by Cm = I/2, generates a flow described
by the velocity potential

φb(x) = − a3U · (x − xb)

2|x − xb|3 . (2.17)
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To simplify the analysis, we will restrict our attention to the axisymmetric interaction
between a vortex ring and a sphere. The image vorticity for a vortex ring may
be obtained from Lighthill (1956a), which, together with the self-induced motion
(Appendix B) and (2.11), enables the coupled dynamics to be studied, as described
in § 5.

3. Interaction between a cylinder and an isolated point vortex
We now examine the coupled dynamics of a point vortex of circulation Γ and a

rigid cylinder, which are initially located at (R, 0) and the origin, respectively. Since
we focus on the case with zero total momentum, the cylinder must have an initial
vertical velocity, Ẏ b(0), which is determined by the initial position of the point vortex.
This case can be easily extended to one in which the initial total momentum is
non-zero. The position of the vortex and cylinder are denoted by (xv, yv) and (Xb, Yb),
respectively, in Cartesian coordinates. Initially, the vortex and cylinder are located at
(R, 0) and (0, 0), respectively. The conservation of momentum results in

Ẋb = − Γ

π(ρb/ρ + 1)a2

(
yv − (yv − Yb)a

2

r ′2
v

)
, Ẏ b =

Γ

π(ρb/ρ + 1)a2

(
xv − (xv − Xb)a

2

r ′2
v

)
.

(3.1)

The separation between the centre of the cylinder and the point vortex is r ′
v = [(xv −

Xb)
2+(yv−Yb)

2]1/2. The velocity of the point vortex, (ẋv, ẏy), is determined from (2.12)–
(2.15). The coupled dynamics are more readily studied in complex variables, where
the position of the cylinder’s centre, point vortex and separation are Zb = Xb + iYb,
Zv = xv + iyv and Z =Zv − Zb, respectively. The momentum and advection equations
describing the motion of the body and vortex, (3.1) and (2.12) respectively, reduce to

Żb =
Γ i

πa2(ρb/ρ + 1)

(
Z − Za2

|Z|2 + Zb

)
, (3.2)

Ż = −Γ ia2

2π

Z

|Z|2(|Z|2 − a2)
− Γ i

πa2(ρb/ρ + 1)

(
Z

(
1 − a4

|Z|4

)
+ Zb +

Zb

Z
2

)
, (3.3)

where ∗ denotes the complex conjugate. The separation between the point vortex
and cylinder (Z) is determined by the motion of the cylinder (Zb), but not the image
vortices, which induce a flow perpendicular to the line between the cylinder and
vortex (i.e. proportional to iZ). The coupled dynamics are controlled by the ratio of
the velocity induced by the cylinder (second term on the right-hand side of (3.3))
to the velocity induced by the image vortices (first term on the right-hand side of
(3.3)), expressed by R4/(ρb/ρ + 1)a4. For R4/(ρb/ρ + 1)a4 � 1, the initial velocity of
the cylinder is sufficiently small that its dynamics are coupled to the point vortex
and periodic solutions result. Whereas for R4/(ρb/ρ + 1)a4 � 1, the cylinder moves
sufficiently fast to escape from the vortex and moves off to infinity.

3.1. Coupled motion: R4/(ρb/ρ + 1)a4 � 1

When R4/(ρb/ρ + 1)a4 � 1, the separation between the vortex and cylinder is
sinusoidal, Z = R exp(−iωt) (from (3.3)), whose angular frequency is,

ω ∼ Γ a2

2πR2(R2 − a2)
. (3.4)
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From (3.2), the position of the cylinder is

Zb(t) =
2R4

a3(ρp/ρ + 1)

(
1 − a2

R2

)2 (
exp

(
Γ it

π(ρb/ρ + 1)

)
− exp (−iωt)

)
. (3.5)

According to (3.5), the cylinder moves along an oscillatory path with a mixture of
two frequencies: the first is set by the angular frequency of the vortex around the
cylinder, and the second, much longer angular frequency, determined by the dipolar
response of the cylinder. The position of the vortex is Zv = Z +Zb. As ρb/ρ → ∞, the
displacement of the cylinder tends to zero and the vortex moves around the cylinder,
recovering the results of Saffman (1996, p. 42) and Howe (2003, p. 111).

The rate of increase of the square of the separation between the vortex and cylinder
is

d|Z|2
dt

= − Γ i

a2π(ρp/ρ + 1)
(ZZb − ZZb)

(
1 − a2

R2

)
∼ 4Γ R6(1 − 3a2/R2)

a6π(ρb/ρ + 1)2
sin(ωt). (3.6)

The separation between the vortex and cylinder oscillates with time. According to
(3.6),

|Z|2 = R2 +
8R10

a8(ρb/ρ + 1)2
(1 − cosωt) . (3.7)

As R4/(ρb/ρ + 1)a4 increases, the amplitude of oscillation of the cylinder (from (3.5)
and (3.7)) increases to such an extent that the cylinder moves off to infinity.

3.2. Uncoupled motion: R4/(ρb/ρ + 1)a4 � 1

When R4/(ρb/ρ + 1)a4 � 1, the initial vertical velocity of the cylinder is sufficiently
large that it moves off to infinity, and the permanent displacement of the vortex is
negligible.

To first order, the cylinder initially moves parallel to the y-axis with a speed
Ẏ b(0) = Γ (R − a2/R)/π(ρb/ρ + 1)a2 (from (3.2)), and the relative separation between
the vortex and cylinder increases according to Z = Ẏ b(0)t i − R. From (3.3), the vortex
moves ultimately to

lim
t→∞

Zv(t) ∼ Zv(0) +

∫ ∞

0

Γ ia2

2π

R − iẎ b(t)t

(R2 + Ẏ 2
bt

2)2
dt = R +

(
−1

2
− π

4
i

)
a4(ρb/ρ + 1)

2R3
. (3.8)

The ultimate velocity of the cylinder is related to the ultimate position of the vortex
through (3.1), so that to second order the velocity of the cylinder tends to

πa2(ρb/ρ + 1)

Γ
lim
t→∞

Żb(t) ∼
(

1 − a2

R2

)
i +

(
−1

4
i +

π

8

)
(ρb/ρ + 1)a4

2R4(1 − a2/R2)
. (3.9)

For short time, a vortex with positive circulation rotates around the cylinder in a
clockwise direction with the vortex initially displaced downwards and horizontally
towards the origin. The displacement of the vortex leads to the cylinder, by momentum
conservation, acquiring a horizontal velocity while its vertical velocity is slightly
reduced, as indicated by (3.9).

3.3. Numerical results

Figure 1 shows the trajectories of an isolated point vortex and cylinder calculated
numerically for a fixed initial separation (R = 3a). Figure 1 shows the influence of
decreasing the density of the cylinder, corresponding to an increase in R4/(ρb/ρ + 1)a4.
The vortex moves in a clockwise fashion around the cylinder. The cylinder moves in
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Figure 1. The trajectories of the point vortex and cylinder indicated in the left-hand and
right-hand columns, respectively. The vortex is initially at R = 3a. The figures correspond to
(a) ρb/ρ = 1000; (b) 500; (c) 200; (d) 130. Note the contrasting scale in (d(ii)).

an anticlockwise direction around the origin. With decreasing density of the cylinder,
the amplitude of the oscillations increases. This is more clearly illustrated in figure 2
where the corresponding variation of |Z|2 is plotted. For R4/(ρb/ρ + 1)a4 � 1, the
motion of the cylinder and vortex remain coupled with their separation varying
periodically in time.

As the density of the cylinder decreases, a critical value of R4/(ρb/ρ +1)a4 is
reached when the amplitude of the oscillation becomes unbounded. Figure 3 is a
regime diagram which discriminates between coupled and uncoupled motion. The
critical value of R4/(ρb/ρ + 1)a4 is calculated numerically by first fixing R and then
increasing ρb/ρ until the separation of the cylinder and vortex exceeds 20R. For
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Figure 2. The variation of the square of the separation between the cylinder and point vortex,
|Z|2, with time, for decreasing values of cylinder density (see figure 1). Note, the result for
ρb/ρ = 130 is not plotted because its amplitude is so much larger that the other examples.
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Figure 3. Regime diagram describing the dynamics of a cylinder and point vortex.

ρb/ρ � 1, the critical value tends to R4/(ρb/ρ + 1)a4 ∼ 0.50. A sensitivity analysis
suggests that this critical value hardly changes for larger values than 20R. The
characteristic time scale of the problem is set by a2/Γ , but the coupled dynamics are
independent of the vortex circulation Γ .

When the motion becomes uncoupled, the cylinder acquires a fraction of the vortex
impulse and ultimately moves with a constant velocity. Figure 4 shows a hodograph
plot of the ultimate dimensionless velocity of cylinders which have moved off to
infinity. In the limit of R4/(ρb/ρ + 1)a4 � 1, the cylinder moves parallel to the y-axis.
The second-order correction to the velocity (3.9) is plotted as a dashed curve and
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Figure 4. Hodograph plot for the velocity of the cylinder which has moved off to infinity.
The three curves correspond to ρb/ρ = 100, 500 and 1000; the initial position of the vortex,
R, spans a decade above the critical value indicated in figure 3. As separation between the
cylinder and vortex increases, the velocity of the cylinder tends to the dashed curves described
by (3.9).

provides a leading-order description when the separation between the vortex and
cylinder is initially large.

4. Interaction between a cylinder and a dipolar vortex
We extend the previous calculations to examine the interaction between a cylinder,

initially at rest at the origin, and a propagating dipolar vortex starting at infinity. The
separation between the positive and negative point vortices, each of absolute strength
Γ , is 2d and their midpoint is initially a distance h from the centreline.

4.1. Symmetric interaction (h = 0)

The positive and negative point vortices have positions (xv, ±yv). Far upstream of the
cylinder (xv → −∞), the separation of the vortices, 2yv , tends to 2d (figure 5a). The
cylinder moves along the centreline, with a horizontal velocity related to the impulse
of the image and free vorticity through

Ẋb =
2Γ

πa2(ρb/ρ + 1)

[
d − yv

(
1 − a2

r ′2
v

)]
, (4.1)

where r ′
v = ((xv − Xb)

2 + y2
v )

1/2 and x ′
v = xv − Xb. By symmetry, we need only consider

the motion of the positive vortical element lying in the upper half-plane (y > 0), which
according to (2.12) moves with a velocity

ẋv =
Γ

2π

[
1

2yv

+
yv

r ′2
v − a2

−
yv

(
1 + a2/r ′2

v

)
x ′2

v

(
1 − a2/r ′2

v

)2
+ y2

v

(
1 + a2/r ′2

v

)2

]
+

Ẋba
2
(
x ′2

v − y2
v

)
r ′4
v

(4.2)

ẏv =
Γ x ′

v

2π

[
− 1

r ′2
v − a2

+
1 − a2/r ′2

v

x ′2
v

(
1 − a2/r ′2

v

)2
+ y2

v

(
1 + a2/r ′2

v

)2

]
+

2Ẋba
2x ′

vyv

r ′4
v

. (4.3)
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Figure 5. Schematic showing the notation employed to study (a) symmetric (h = 0) and
(b) asymmetric interaction (h > 0) between a cylinder (denoted by a dashed line) and a dipolar
vortex whose trajectory is denoted by a thin line. These problems are studied in § § 4.1 and 4.2,
respectively. In (a), points A2B1 and B2C1 are, respectively, (r1, π − θ1) and (r1, θ1). In (b), the
angular deflection of the vortex is θF .

In this problem, the cylinder is initially at rest and so has zero initial impulse and
momentum. As we shall see, the interaction between the dipolar vortex and cylinder
has two possible outcomes: the dipolar vortex moves over and past the cylinder and
does not impart impulse to the cylinder, or the cylinder acquires impulse, and moves
off to infinity faster than the dipole.

4.1.1. Asymptotic expressions for displacement in the limits of d/a � 1, ρb/ρ � 1

This limit corresponds to a dense cylinder and a small vortex. As the vortex
approaches the cylinder, the impulse associated with the image dipolar vortex
decreases, so that the cylinder initially moves forward. Within a distance ∼ d from the
cylinder’s centre (corresponding to A2B1 in figure 5a), the vortical elements separate
and pass (along B1B2) around the cylinder, increasing the impulse of the dipolar
vortex, and the velocity of the cylinder decreases until its direction of motion is
reversed. Along B1B2, vortices lie a distance ∼ d from the cylinder – they unite at
B2C1 before moving off at a constant speed.

We assume a priori that the cylinder is displaced a small distance forward (|Xb| � a),
and confirm this assumption at the end of this calculation. When |Xb| � a, the
trajectory of the vortices are described (Milne-Thompson 1968, p. 369), to leading
order, in polar coordinates, by

rv sin θv

(
1 − a2

r2
v

)
= d

(
1 +

a4

r4
v

− 2a2

r2
v

cos 2θv

)1/2

. (4.4)

The dynamics of the cylinder may be calculated by considering the vortex trajectory
along the sections A1A2, B1B2 and C1C2 (see figure 5a), and matching asymptotic
expansions over an intermediate region. The vortex dipole spends a finite time
O(d2/Γ ) near to A2B1 and B2C1, so that a regular perturbation analysis may be
applied to estimate the displacement of the cylinder – this is in contrast to fluid
particles which spend an infinite time near stagnation points and for which a matched
asymptotic analysis must be applied (Lighthill 1956b).

Along the trajectories A1A2 and C1C2, the radial velocity of the vortex is

ṙv =
Γ cot θv

4πrv

(
1 − 4d2a2(

r2
v − a2

)2

)
. (4.5)
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The displacement of the cylinder as the point vortex moves from A1 to A2, can be
estimated by combining (4.1), (4.4) and (4.5) to yield

Xb,A1A2
=

∫ ∞

r1

Ẋb

ṙv

drv ∼ 8

a2(ρb/ρ + 1)

∫ ∞

r1

rv tan θv

d − rv sin θv

(
r2
v − a2

)
/r2

v

1 − 4d2/
(
r2
v − a2

)2
drv, (4.6)

where (r1 − a)/a � 1. Expanding the integrand in terms of rv(∼d/sin θv) and
integrating, we obtain

Xb,A1A2
∼ 8d2

a(ρb/ρ + 1)
. (4.7)

As the point vortex moves from A1 to A2, the impulse of the image vorticity decreases,
so that the cylinder acquires impulse and moves forward.

Along the curved trajectory B1B2, the radial positions of the vortical elements are

rv ∼ a + d − d2

2a
+

d3

2a2 sin2 θv

. (4.8)

From (4.8) and (4.1), the cylinder’s velocity is

Ẋb ∼ 2Γ d

πa2(ρb/ρ + 1)
(1 − 2 sin θv) . (4.9)

As the vortical elements pass around the cylinder, the angular position of the positive
vortex decreases (from θv = π) leading to a decrease in the cylinder’s velocity. Over
the range π/6 � θv � 5π/6, the impulse of the free vorticity increases to such an
extent that the velocity of the cylinder is negative. From (4.2) and (4.3), the angular
speed of the vortex around the cylinder is

θ̇ v ∼ − Γ a

4πr2
v (rv − a)

. (4.10)

Combining (4.9) and (4.10), the displacement of the cylinder due to the vortex moving
along B1B2 is

Xb,B1B2
=

∫ θ1

π−θ1

Ẋb

θ̇ v

dθv ∼ 8d2(4 − π)

a(ρb/ρ + 1)
, (4.11)

where θ1 � 1. The total displacement of the cylinder is obtained by combining
contributions from A1A2, B1B2 and C1C2, to yield

lim
t→∞

Xb(t) = 2Xb,A1A2
+ Xb,B1B2

∼ 8(π − 2)d2

a(ρb/ρ + 1)
, (4.12)

as d/a → 0. Equation (4.12) ensures that |Xb| � a and the initial assumption is then
justified.

4.1.2. Asymptotic expressions for displacement in the limits of d/a > 1, ρb/ρ � 1

When the vortex is no longer small, the displacement of the cylinder must also be
considered. The main steps in the analysis of the cylinder displacement are described.
To first order, the velocity of the cylinder is described (from § 4.1.1) by

Ẋb ∼ 2Γ d

πa2(ρp/ρ + 1)

[
a2

r2
v

cos 2θv − a4

2r4
v

sin2 2θv + · · ·
]

. (4.13)
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To leading order, the velocity and displacement of the cylinder are

Ẋb1 =
2Γ d

πa2(ρp/ρ + 1)

a2

r2
cos 2θv, Xb1 =

4d

ρp/ρ + 1
sin 2θv. (4.14)

By integrating (4.13), the permanent displacement, to first order, is

lim
t→∞

Xb ∼ 7πa2

d(ρp/ρ + 1)
. (4.15)

The velocity of the cylinder is determined, to second order, by relaxing the constraint
that the cylinder is fixed, to give (from (4.1)),

Ẋb ∼ 2Γ

πa2(ρb/ρ + 1)

(
d − yv

(
1 − a2

r2
v

)
+

2xvyvXb1a
2

r4
v

)
. (4.16)

The vertical velocity of the vortical element, expanded about the origin, is

ẏv(x
′
v, yv) ∼ ẏv(xv, yv) + Xb1

∂ẏv

∂xv

, (4.17)

which yields

ẏv ∼ −2Γ sin2 θv cos θv

πr3
v

+
2 sin θv cos θva

2Ẋb1

r2
v

+
6Γ Xb1 sin2 θv cos2 θv

πr4
v

+
2Γ Xb1 sin θ(2 sin θv cos2 θv − sin3 θv)

πr4
v

. (4.18)

Likewise, to second order, the angular velocity of the vortex around the cylinder is

θ̇ v ∼ − Γ

4πr2
v

(
1 +

4a2 sin2 θv

r2
v

)
+

Ẋb1 sin θ

r3
v

+
Γ Xb1 sin2 θv cos θv

πr5
v

. (4.19)

By combining (4.18) and (4.19), the vertical position of the positive point vortex is

yv =

∫ 0

π

ẏv

θ̇ v

dθ ∼ d +
2a2 sin4 θv

d
+

a2

d(ρp/ρ + 1)
[4 sin4 θv + 48 sin6 θv − 48 sin8 θv].

(4.20)

Substituting (4.20) into (4.16) and integrating using (4.19), the displacement of the
cylinder is now

lim
t→∞

Xb(t) ∼ 7πa2

(ρp/ρ + 1)d
+

24πd

(ρp/ρ + 1)2
. (4.21)

Rescaling (4.21) results in

X̃b = lim
t→∞

Xd(t)
(ρb/ρ + 1)3/2

aπ(168)1/2
, d̃ =

(24/7)1/2d

a(ρb/ρ + 1)1/2
,

or

X̃b ∼ 1

d̃
+ d̃. (4.22)

Thus for ρb/ρ � 1, the displacement of the cylinder is not monotonically increasing
with d , but rather displays a local maxima and minima, with the displacement
ultimately increasing in proportion to d . The analysis is valid providing the
displacement is much smaller than a, a constraint which requires d/a � (ρb/ρ + 1)2.
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When this is not satisfied, the displacement still grows in proportion to d (for d/a � 1),
but with an offset not captured by the analysis described.

4.1.3. Light cylinder, ρb/ρ < 1

As shown in § 4.1.2, the cylinder accelerates forward as the dipolar vortex
approaches. If the inertia of the cylinder is small enough, the cylinder acquires
sufficient impulse from the dipolar vortex that it moves with the same velocity as
the vortex. The flow induced by the cylinder squeezes the vortical elements together,
further reducing the impulse of the vortex and increasing the velocity of the cylinder.
Finally, the cylinder moves faster than the vortex. This type of encounter is completely
different from that for dense cylinders.

For d/a � 1, the relative velocity between the vortex and cylinder (from (4.1)) is
approximately

ẋv − Ẋb ∼ Γ

4πyv

− 2Γ

πa2(ρb/ρ + 1)

[
d − yv

(
1 − a2

r ′2
v

)]
. (4.23)

The point at which the relative speed of the vortex to the cylinder is zero, is determined
from (4.20) and (4.23), to be

ρb

ρ
+ 1 ∼

(
16 +

160

ρb/ρ + 1

)
sin4 θs +

256

ρb/ρ + 1
sin6 θs − 384

ρb/ρ + 1
sin8 θs. (4.24)

Equation (4.24) indicates that the angular position of the turning-point is independent
of the initial size of the vortex. Comparison of (4.24) with numerical solutions confirms
that θs is accurately predicted for ρb/ρ < 0.1, but the difference increases to 20 % for
ρb/ρ ∼ 1.

4.2. Asymmetric interaction (h > 0)

For asymmetric interactions between the dipolar vortex and cylinder, both the
trajectories of the positive and negative vortical elements must be followed. These
equations are not listed here but can be obtained from (2.12)–(2.15).

To illustrate the asymmetric interaction physically, we consider a small dipolar
vortex ‘striking’ a dense cylinder, so that h � a, ρb/ρ � 1 and d/a � 1. The interaction
is relatively local in this case, so that the cylinder can be represented as an inclined
wall at point D (figure 5b). Denoting the separation of the positive and negative
vortices from the cylinder by d1 and d2 (see figure 5b), we find from impulse and
energy conservation during the finite-time interaction with the cylinder (e.g. Batchelor
1967, p. 531; Eames & Dalziel 2000), that

d1 − d2 = 2d cos α, d1d2 = d2, (4.25)

where α = cos−1(h/a). Since d1 >d2, the positive vortex moves slower around the
cylinder than the negative vortex. The vortices meet at the point E (figure 5b)
determined by the relative angular velocity of the two vortices around the cylinder,
before moving off at an angle α to the local tangent of the cylinder. The dipolar
vortex is ultimately deflected by an angle

θF = 2α − 2π(
cos α + (cos2 α + 1)1/2

)2
+ 1

, (4.26)
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Figure 6. Upper half-plane showing the trajectories of dipolar vortices (in the frame of the
cylinder) released far upstream of the cylinder, with d/a for (a) ρb/ρ = 0; (b) 0.5, and (c) 1.
For ρb/ρ = 1, the vortices pass around the cylinder, while for ρb/ρ < 1, the vortices far from
the cylinder reverse with the cylinder moving off to infinity.

to the horizontal, independent of d for d/a � 1. The ultimate velocity of the cylinder
is determined, from (2.10), by the direction of propagation of the vortex through

lim
t→∞

U =
2Γ d

πa2(ρb/ρ + 1)
(1 − cos θF , − sin θF ) . (4.27)

For h/a > 1 and d/a � 1, the dipolar vortex does not ‘strike’ the cylinder and the
angular displacement of an incident vortex is negligible.

4.3. Numerical results

Figure 6 shows the trajectories of the positive vortex for different cylinder densities
and separation distances, d . The trajectories are plotted in the frame moving with the
cylinder. The velocity of the cylinder increases as the dipolar vortex approaches it,
because the impulse of the image vortex decreases. In figure 6(a), some trajectories
reverse relative to the moving cylinder, illustrating that for large d the cylinder speeds
up relative to the vortex, and the cylinder acquires impulse. For small d , the impulse
exchange during interaction is too small to enable the cylinder to overtake the dipolar
vortex. When the vortex moves around and over the cylinder, the cylinder’s impulse
reduces to zero and is displaced a finite distance forward. The threshold value of
d/a for which the cylinder overtakes the vortex, increases for denser cylinders (see
figure 6b, c), whereas for ρb/ρ � 1, all vortices move past the cylinder. A regime
diagram showing the transition between these two different interactions is shown in
figure 7. The angular position of the vortices relative to the cylinder, and the impulse
exchange, represented by the reduction in the vortex separation, is shown in figure 8.
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Figure 7. Regime diagram for a symmetric dipole and cylinder interaction. The dashed/full
curve denotes the separation between two regimes of changed and unchanged vortex impulse
for a cylinder/sphere. The regime diagram for a symmetric interaction between a sphere and
vortex ring is calculated for a vortex core to sphere radius r0/a = 0.1 (see § 5).
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cylinder reverses, as a function of d/a, is shown in (a) for ρb/ρ = 0, 0.2, 0.4, 0.6 and 0.8. The
final impulse of the cylinder is proportional to the reduction in the separation of the vortical
elements (d − limt→∞ yv) whose variation with the initial separation of the vortices, 2d , and
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Inviscid coupling between bodies and vortices 49

10–1 100 101
10–2

10–1

100(a)

d/a

li
m

t →
 ∞

 X
d 

(ρ
b/
ρ
 +

 1
)/

8a
(π

 –
 2

)

100 101
100

101

(b)

d

X
b

Increasing
ρb/ρ

Increasing
ρb/ρ

Figure 9. Displacement of a dense cylinder, limt→∞ Xb(t) for (a) small d/a and (b) large d/a,
owing to a symmetric interaction with a dipolar vortex, for ρb/ρ = 102, 103 and 104. The
displacement is normalized to enable (4.12) and (4.22), plotted as dashed lines in (a) and (b),
respectively, to be tested. In (b), only a few of the displacement curves are plotted.

Figure 9 shows the total displacement of a dense cylinder caused by a symmetric
interaction with a dipolar vortex (h = 0), as a function of the initial size of the vortex.
For d/a � 1, the permanent displacement increases with d and figure 9(a) shows good
agreement with the prediction (4.12). The displacement does not increase monoton-
ically with d , but for large values of ρb/ρ has a point of inflection. The rescaled
displacement shown in figure 9(b) is in agreement with (4.22) for dense cylinders.

The angular deflection of the dipolar vortex θF following an encounter with a dense
cylinder is shown in figure 10. The angular displacement depends on the incident
angle to the cylinder. The relative travel times of the positive and negative vortical
elements around the cylinder correspond, respectively, to the first and second terms
in (4.26). For small h/a, the first contribution in (4.26) dominates. For larger h/a < 1,
the relatively faster speed of the positive vortical element determines the position of
the encounter between the two elements and thereby also θF . The agreement with the
predictions (4.26) and numerical results appears good for d/a � 1 and h/a < 1. For
large h/a, the angular displacement of the dipolar vortex is small.

5. Interaction between a sphere and vortex ring
The crucial difference between vortex–body interactions in two- and three-

dimensions is the rate of decay of velocity perturbations with distance. To illustrate
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Figure 10. The variation of the angular deflection, θF , of a dipolar vortex with h/a (see
figure 5b), for d/a = 0.01, 0.05 and 0.2. The density of the cylinder is fixed at ρb/ρ = 100. ×,
approximation (4.26) to the angular deflection.

that, broadly, the results for two- and three-dimensions are consistent, we consider
the symmetric interaction between a rigid sphere (of radius a), initially at rest, and
a vortex-ring. The vortex-ring starts from infinity, has circulation Γ , initial radius
d and core radius r0 and position xv , yv . Because of the presence of the sphere, an
image vortex ring of circulation Γ ′ = −Γ r ′

v/a, and radius a2yv/r ′2
v is created, where

r ′
v = ((Xb − xv)

2 + y2
v )

1/2.
The conservation of momentum (2.15), gives

4πa3

3

(
ρb

ρ
+ Cm

)
Ẋb = πΓ

(
d2 − y2

v

(
1 − a3

r ′3
v

))
, (5.1)

where Cm = 1/2. The vortex ring is advected with a velocity (ẋv, ẏv) where

ẋv =
a3Ẋb

(
2x ′2

v − y2
v

)
2r ′5

v

+ uvx + Uv, (5.2)

ẏv =
3a3Ẋbx

′
vyv

2r ′5
v

+ uvy. (5.3)

The flow induced by the image vortex ring, (uvx, uvy), is described in Appendix B.
The self-induced velocity of the vortex ring,

Uv =
Γ

4πyv

[
ln

(
8d

r0

[yv

d

]3/2
)

− 1

4

]
, (5.4)
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Figure 11. Trajectories of a vortex ring which encounters a sphere, in the frame of the
sphere, for (a) ρb/ρ = 0; (b) 0.5 and (c) 1.

is based on an assumption that the vortex core is much smaller than its radius (i.e.
r0/d � 1) and that it remains circular with time. An identical set of equations have
been applied to explore the interaction between vortex rings and spheres (Howe 2003).
The new aspect of the present calculation is the inclusion of the coupled momentum
equation (5.1) and the sphere’s density. Figure 11 shows the trajectories of a vortex
ring, in the frame moving with the sphere, for ρb/ρ = 0, 0.5 and 1. As for the
two-dimensional cylinder interactions above, a light sphere may acquire impulse from
the vortex ring before moving off faster than the vortex. Figure 7 shows a regime
diagram which discriminates between when impulse is transferred from the vortex
ring to the sphere and when the impulse of the vortex ring is preserved. This faster
decay ensures that the interaction occurs much closer to the sphere, as shown by
comparing figure 11(a) and figure 6(a). The fractional reduction in the radius of the
vortex ring is shown in figure 12(b). Note that for ρb/ρ < 1.5, the sphere can acquire
impulse from the vortex; but for ρb/ρ � 1, the vortex moves over the sphere, which
is permanently displaced a finite distance forward.

When the vortex ring is large (d/a � 1), and the sphere dense (ρb/ρ � 1) the
velocity of the vortex perpendicular to the centreline is

ẏv = − 3y3xΓ a3

4(x2 + d2)4
. (5.5)

To leading order, the translation velocity of the vortex ring is unchanged for d/a � 1,
and the perturbation to the radius of the vortex ring is

yv ∼ d +
d2a3Γ

8Uv(x2 + d2)3
. (5.6)
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Figure 12. (a) Angular position of the stationary point where the vortex trajectory reverses.
(b) The permanent decrease in the vortex radius as a consequence of interacting with a sphere,
as a function of its initial size, is shown. The density of the sphere is ρb/ρ = 0, 0.2, 0.4, 0.6
and 0.8.

Substituting (5.6) into (5.1), we obtain a leading-order estimate for the displacement
of the sphere:

lim
t→∞

Xb(t) ∼ d

ρb/ρ + Cm

(
3

2(Uvd/Γ )
− 9π

128(Uvd/Γ )2

)
. (5.7)

Numerical calculations show that the displacement of a dense sphere increases
monotonically with d , in contrast to the displacement of a dense cylinder. The local
interaction means that (5.7) provides a leading-order description of displacement
(figure 13).

6. Concluding remarks
The motivation for this study was to understand (a) how rigid bodies move near

flow features whose length scale is comparable to, or smaller than, the size of the
body, and (b) how they permanently modify the flow. This has been illustrated with
examples of a cylinder or sphere moving inviscidly near singular distributions of
vorticity. The motion of the body and vortices is controlled by the conservation of
the momentum of the body and total impulse of the flow.

The density of the body critically alters the coupled dynamics: a light cylinder (or
sphere) symmetrically interacting with a dipolar vortex (or vortex ring) extracts a
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Figure 13. Displacement of a dense sphere owing to a symmetric interaction with a vortex
ring of radius d and a core radius r0/a = 0.1. The dashed curve is the asymptotic expression
(5.7) for displacement, and the full lines correspond to the numerical solutions for ρb/ρ = 100,
200 and 1000.

fraction of the vortex impulse, and moves off at a constant velocity, faster than the
vortex. In contrast, a dense cylinder (or sphere) does not extract impulse from the
dipole vortex (or vortex ring), but is instead displaced a finite distance forward.
The asymmetric interaction between an initially stationary cylinder and vortex
dipole is reminiscent of two colliding particles, both being governed by momentum
conservation: a dipolar vortex striking a cylinder asymmetrically is deflected, with the
cylinder acquiring a horizontal and vertical velocity which depends on the angular
deflection of the vortex. The inviscid interaction represents a general mechanism by
which bodies may acquire, or even lose momentum, by permanently communicating
it to the vortical field. This is an altogether different mechanism than momentum
exchange through a drag force, which tends to reduce the slip velocity between bodies
and the flow.

This inviscid analysis was based on an assumption that the vorticity distribution
is singular in order that the body/vortex coupling could be studied analytically.
Although the analysis can be applied when there is an external uniform flow, by a
non-inertial change of frame, this cannot be so readily applied to inhomogeneous
ambient flows. To extend this analysis to arbitrarily shaped bodies requires both
the force and torque on the body to be calculated. (The torque on two-dimensional
bodies in the presence of point vortices is known (Shashikanth et al. 2002), but the
corresponding result for three-dimensional bodies is not.)

Impulse is conserved in unbounded viscously dominated flows, but not when sources
of vorticity from rigid surfaces are present. Therefore, (2.10) does not apply to viscous
flows. The influence of vorticity generation by rigid surfaces can be significant, as
illustrated by Orlandi (1993) for a laminar dipolar vortex striking a rigid fixed cylinder.
Secondary vorticity created on the cylinder’s surface pairs up with opposite-signed
vorticity from the incident vortex. The elements of the incident vortex ultimately
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separate. This is in contrast to the inviscid calculations for a dense cylinder which
show that the vortical elements move around the cylinder and unite before moving
off to infinity. For problems where the shed vorticity can be estimated or modelled
(e.g. Sarpkaya 1963; Obasaju, Bearman & Graham 1988; McLain & Rock 1996), the
analysis presented can provide practical estimates of the forces on rigid bodies. For
some problems, where the generation of shed vorticity from surfaces is weak, such as
from the surface of clean spherical bubbles, we would expect the analysis to provide
a leading-order description of the coupled motion of bubbles and vortices. Despite
these limitations, for inertially dominated flows, the drag and lift forces on steadily
translating bodies can be calculated from (2.8) by considering the impulse flux in the
far field, providing a simplified method, for instance, of estimating the shear lift force
calculated by Auton (1987).

The analysis presented provides new insight into how bodies and a vortical field are
coupled. Such processes are neglected from current two-phase flow theories, except
through momentum exchange terms generally based on the drag on the dispersed
phase. In this example, the momentum exchange depends on the time history of
the flow, rather than on an instantaneous relative slip between the discrete phases.
Although such processes are negligible for dilute particle-laden flows, they become
increasingly important for liquid and bubbly flows, where inertial forces are important.
A significant future challenge remains how to correctly incorporate this information
into Lagrangian models of turbulent two-phase flows.

Finally, the analysis suggests that the free dynamics of rigid bodies and vortices
are sensitive to the density of the bodies relative to the ambient flow when ρb/ρ < 1.
Govardhan & Williamson (2002) report a critical change in the behaviour of freely
moving cylinders at ρb/ρ = 0.54. For ρb/ρ < 0.54, the amplitude and frequency of
oscillation increases dramatically suggesting that the cylinders extract a proportion
of the impulse of the shed vortices and communicate this to the lift force.

Appendix A
From (2.5), ∫

S∞

pn̂ dS + F = −ρ
d

dt

∫
V∞−Vb

udV − ρ

∫
S∞

(u · n̂)u dS. (A 1)

Decomposing u into bound, free and image contributions, the first terms on the
right-hand side of (A 1) are

− d

dt

∫
Sb

(φb + φi)n̂ dS − d

dt

∫
S∞

(φb +φi)n̂ dS

− d

dt

{∫
V∞ − Vb

x × ω dV +

∫
S∞

x × (n̂ × ∇φv) dS

}
,

(using identity (16) Saffman 1992, p. 65).

F = − d

dt

∫
Sb

ρ(φb + φi)n̂ dS − d

dt

∫
V∞−Vb

ρx × ω dV + ρ E, (A 2)

where

E = −
∫

S∞

(
1
2
u2n̂ − (u · n̂)u

)
dS +

d

dt

∫
S∞

{(φv − x · ∇φv)n̂ + (x · n̂)∇φv} dS.
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The terms can be evaluated on a large circular control volume of radius Rs . For a
sufficiently large control surface the first term is zero. When the free vorticity has
a non-zero circulation, in the far field φv →

∑N

i Γi/2π tan−1(y/x). Evaluating the
second integral term as Rs → ∞, we find it is a constant and finally obtain

F = −[ İb + İv + İ i].

In extending the results to three-dimensions, for a vortex ring and body, the only
major difference is that the far-field flow is dipolar and there is a factor of 1/2
introduced for the impulse associated with the free vorticity.

Appendix B
The equation describing the flow induced by the image vortex ring is described.

The image of a vortex ring located at (xv, yv) and a sphere at (Xb, 0) is a vortex ring
of circulation Γ ′ = −Γ r ′

v/a and radius ŷ = yva
2/r ′2

v . The streamfunction describing
the flow around the image vortex is

Ψ =
Γ ′(yvŷ)1/2

2π

((
2

k
− k

)
K(k) − 2

k
E(k)

)
, (B 1)

where

k2 =
4yvŷ

x̂2 + (yv + ŷ)2
, x̂ =(xv − Xb)

(
1 − a2

r ′2
v

)
,

and K(k), E(k) are the complete Elliptic functions of the first and second kind (see
Saffman 1992, p. 193). The velocity components are related to the streamfunction
through

uvx = −1

y

∂Ψ

∂y
, uvy = −1

y

∂Ψ

∂x
. (B 2)
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